

When diachrony is helping for a synchronic study: the case of the Mo Piu tones from the Hmong-Mien family in Northern Vietnam

CAELEN-HAUMONT, Geneviève, MICA, Hanoi, Vietnam BARTKOVA, Katarina, ATIFL, Nancy, France

International Research Institute MICA

Multimedia, Information, Communication & Applications UMI 2954

Hanoi University of Science and Technology
1 Dai Co Viet - Hanoi - Vietnam

The Mo Piu Project

- MICA « Au Co » project, and 3 CNRS-ANR projects about Mo Piu language (Appsy, Langues Pi, PEPS April)
- The Mo Piu ethny is an endangered minority of the Northern Vietnam close to the Chinese border
 - 2012 : 238 people
 - before our study
 - * a branch still unknown of the *Hmong-Miên family*
 - * without writing, uncharted, undocumented
- Finding out the Mo Piu phonology and tonology

Aims of this study

- to contribute to the knowledge of the Hmong-Mien family languages
- to better detect the number and patterns of the Mo Piu tonal system
 - Focussing on a deeper insight on the mo piu tonal system
- Using and checking 2 dedicated tools: MISTRAL+ and PROSOTRAN
- Pilot study: only data recorded by one (LAK01) of our speakers are studied
 - LAK01 chosen because
 - ⋆ he knows perfectly his language
 - ⋆ he has linguistic skills (primary school teacher)

Some linguistic cues to link the Mo Piu language to the Hmong-Miên Family

- For instance, comparison of the Mo Piu numerals with the Proto-Hmong-Mien / Hmongic ones
 - Ratliff 2010
 - etlingweb.ewa.mpg.de

Hmong Nznuab, China				
1. ?i ⁵⁴	6. tou ⁴⁴			
2. ?au ⁴³	7. çaŋ ⁴⁴			
3. pei ⁵⁴	pei ⁵⁴ 8. z i ²²			
4. plou ⁵⁴	4. plou ⁵⁴ 9. tçua ⁴²			
5. t∫₄ ⁵⁴	10. kou ²²			

IImana Nahuah

Dananshan Miao (Hmong Njua), China		
1. [?] i ⁴³	6. təu ⁴⁴	1.
2. [?] au ⁴³	7. çaŋ ⁴⁴	2.
3. pe ⁴³	8. z i ²⁴	3.
4. pləu ⁴³	9. tçua ³¹	4.
5. tşi ⁴³	10. kəu ²⁴	5.

Mo Piu, Vietnam (temporary transcription)				
1. ε [æ]¤	6. tɔ¤			
2. wa¤	7.dzãŋ¤			
3. pa¤	8. <u>j</u> i¤			
4. plo¤	9. tço¤			
5. p(h)i¤	10. khɔ [ə]			

Reconstruction				
Proto-Hmong-				
Miên				
1. *?i				
2. *ʔu̯i				
3. *pjou				
4. *plei				
5. *pra				
10. *gjμερ				

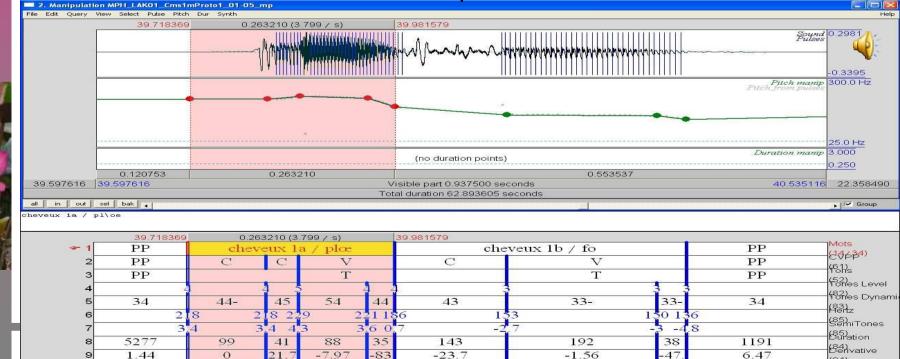
List of Prototones (Ratliff 2010)

- In this context of linguistic reconstruction, a list of 8 prototones was reconstructed
 - Originally based on the Calmsea list
 - Use of 2 versions of the prototones list
 - * Extended version
 - 206 words x 3 repetitions x 2 speakers = 1236 items
 - Composed of words from the prototones list + speaker's addings (words semantically linked) during recording sessions
 - 1752 tonal sequences from 808 vowels
 - Here only one speaker's (LAK01) data are analysed
 - * Restricted version (Martha Ratliff's one)
 - 175 words x 3 repetitions x 2 speakers = 1050 items
 - But the 175 French words give rise to Mo Piu single or compound words
 → selection of the true item / true tone
 - the mo piu compound words
 - Periphrases (word-to-word translation): most of the cases is a loan, therefore divergent from the prototypical pattern
 - compound word with classifier or not
 - ◆ 2 versions of the prototones lists → 2 studies

About the history of the 8 prototones

- Historically, the 8 prototones issued from 4 tonal patterns (Ratliff, 2010): A, B, C, D
 - Difference on the first C: voiced / + voiced
 - ⋆ Pattern A: CV(N)
 - voiced → Prototone 1
 - + voiced → Prototone 2
 - ⋆ Pattern B: CV?
 - - voiced → Prototone 3
 - + voiced → Prototone 4
 - * Pattern C: CVH
 - - voiced → Prototone 5
 - + voiced > Prototone 6
 - ⋆ Pattern D: CV(C)
 - - voiced > Prototone 7
 - + voiced → Prototone 8
 - Some other cues on the 1st consonant when voiced
 - ★ Breathy: Prototones 2, 4, 6
 - ⋆ Creaky: Prototone 8

Example of compound word: hair ~ cheveux


- An example of the mo piu compound word /hair /
 - /plœ/ = /hair/ standing for /poils ≠ cheveux in French /
 - /fo/ = /head/

MICA

2013

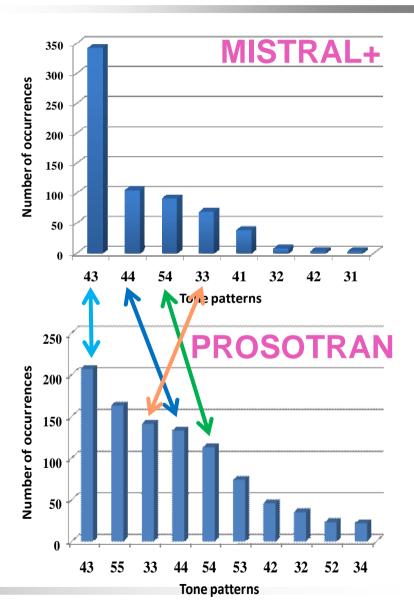
 /plœ/ is the selected word though it is generic (as in English) because...

• ... the tone is in concordance with the 1 (or 2) representative(s) of the tones in the same class of prototones

Study 1: Prototone list extended Comparison of MISTRAL+ and PROSOTRAN

- MISTRAL+: a semi-automatic approach under Praat (Weber and all, 2012)
 - Computing:
 - ★ the speaker tonal range (Hz, semi-tones every 10 ms)
 - choice of the number of levels: here 5 levels
 - ★ the tone values at phonetic and word levels: boundaries and segment (dynamic perspective)
 - * the duration of the different items, derivative...
 - Pre-alignment of the melodic curve but manual adjustement is needed, using vision and listening
 - Time synchronization between
 - ⋆ boundaries of the phonetic items
 - ⋆ and the rebuilt simplified melodic curve (under Praat Manipulations)
 - Creating an automatic xls file with all the manual and computed data
 - ⋆ allowing IPA codes

Study 1: Prototone list extended Comparison of MISTRAL+ and PROSOTRAN


PROSOTRAN (Bartkova and all, 2012)

- Based on phoneme segmentation (manual for both tools)
- Annotating automatically the tone patterns in semi-tones (10 ms)
- Tone levels calculated from histograms of F0 distribution
 - ★ discarding the extreme values
 - ⋆ using 5 levels
- Calculating
 - ★ The tone level on 3 distinct points per vowel
 - at the beginning of the vowel
 - at the turning point between initial and final part,
 - at the end of the vowel
 - ★ The steepness of the slope (from very steep to flat)...
 - ...which enables to adjust the tone level detection in a postprocessing step

Study 1: Results (1) Comparison of MISTRAL+ and PROSOTRAN

- Comparison of results (Prototone list extended) using two tone boundaries
 - at the beginning
 - and the end
- Occurrences of tone patterns annotated by each tool:
 - Agreement between the results
 - As it is based also on the user's knowledge (threshold effect...), MISTRAL+ supplies less tone patterns

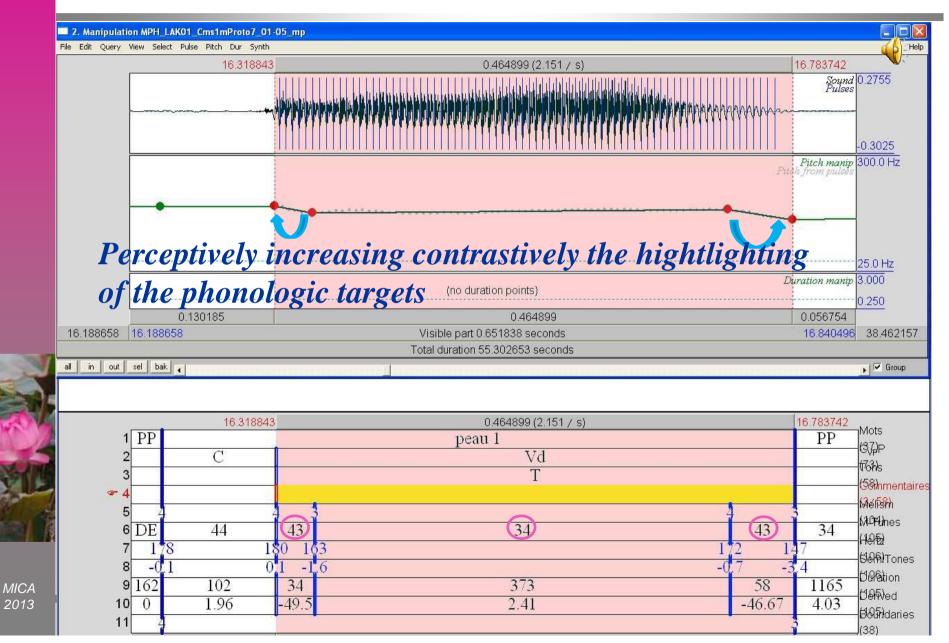
Study 1: Results (2) Comparison of MISTRAL+ and PROSOTRAN

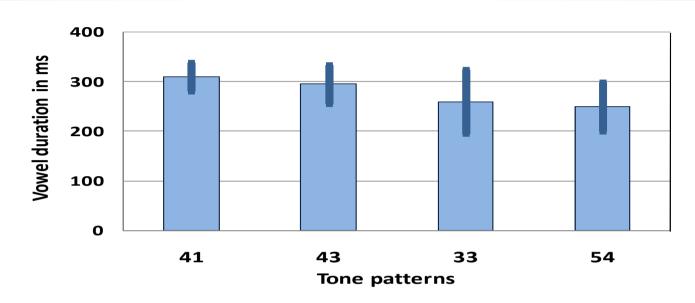
- In continuation of previous studies, for both tools
 - rising slopes are extremely seldom
 - the tone /43/is the most often detected
 - Rate of agreement between the tools
 - ★ when 3 points (beginning, pivot, end) taken into account : 60 %
 - ★ when 2 points (beginning, end): 70 %
 - among the remaining 30%
 - 26 % share one value
 - only 4% are mismatching for the 2 values
 - MISTRAL+
 - ★ Falling slopes: 30 %
 - ⋆ Plateaux: 68%
 - PROSOTRAN
 - ★ Falling slopes: 43 %
 - ⋆ Plateaux: 55%

Study 2: Restricted Prototone list and MISTRAL+

- 660 words/vowels/tones
- 175 lexical items x 3 repetitions x 1 speaker (LAK01)
- 525 mo piu lexical items after selection of one unit from the compound words
- Strong 'tonetic' manual stylization under Praat
 - very close to the F0 slope in a first step (this study)
 - second step: generalization and phonologic perspective (later, so out of scope of this study)
- Corrections of the threshold effect (± 5 Hz around its value) when the repetitions of the same item disagree

Study 2: Speaker effect


- Each tone (mainly either simple or double slope) composed respectively of 2 or 3 fundamental points
 - first boundary
 - turning point (pivot)
 - final boundary
- Between these tonologic points, relative tonal freedom (F0 modulations)
 - Most of the cases: the slope is continuously decreasing
 - ♦ However some overshooting / undershooting occurs
 - ★ the tone /44/ is sometimes 'tonetically' structured as such /4544 = 45-54-44/
 - **★** /54/ → /54554 = 54-45-55-54/
 - **★** /43/ → /4343 = 43-34-43/
 - ★ The seldom rising tones are due to the speaker effect and do not carry a discriminative function
 - An interesting issue seems that the final part of the modulated tone is duplicating the tonologic values of the targets


* Tonologic constraint on the tonetic layer ? Perceptive constraint ? Physiologic constraint ? A mix of constraints ?

Example: no tonologic F0 modulations - tone /43/ -

Results 1: duration of the main tonal patterns

Mean duration of the 525 vowels/tones

- 293 ms (standard deviation, 72 ms): long duration
- in total concordance with the previous studies

No clear tendency to make oppositions between

- 1 or 2 slope tones
- plateaux and falling slopes

Results 2: distribution of the tones patterns across the prototones lists

Nb of lexical items / Vowels / Tones

Tone patterns found in the study (MISTRAL+)

<	>

Nb	P	43	54	44	33	41	32
141	1	19%	<i>65%</i>	12%	2%	0%	2%
75	2	<i>59%</i>	8%	9%	8%	16%	0%
93	3	84%	0%	10%	3%	3%	0%
45	4	33%	0%	0%	60%	7%	0%
93	5	84%	0%	6%	3%	6%	0%
24	6	<i>50%</i>	0%	0%	0%	<i>50%</i>	0%
33	7	91%	0%	9%	0%	0%	0%
21	8	71%	14%	14%	0%	0%	0%
s 525_	7	299	100	45	42	36	3

8 Prototones 5

lists

- lexical items are unevenly distributed across the different prototone lists (6, 7 and 8 supply only a few examples)
- Tone pattern /43/ very frequent
 - in each prototone list
 - ranked as 1st in 2, 3, 5, (6), 7, 8 prototones lists
 - ★ So no clear cues to 1-2, 3-4, 5-6, 7-8 tonal convergences

Discussion 2: the tones patterns distribution

- Limited data restricted to only one speaker and containing an unbalanced number of prototones
- Only some hypotheses possible
 - the prototone 1 seems to have converged towards the tone /54/
 - the prototones 2, 3, 5, 7, 8 seem to have merged into the tone /43/
 - the prototone 6 is distributed equally into tones /43, 41/ but its data are not enough numerous
 - though 1/3 of the tones belongs to tone /43/, the prototone 4 seems to mainly converge towards the plateau /33/
 - the tones /44/ scattered, and /32/ very seldom, seem to be overshot or undershot targets of the other tones
 - ★ it may be possible also that the tone patterns /44, 32/ exist in Mo Piu words not included in the Prototones list
 - other tones may exist in the Mo Piu language than those presented in the prototone list
- Of course, the prototone list is not a Mo Piu tone list
- New data and several speakers are needed

Results 3: Tonal patterns

- Computings restricted to the tones
 - ...presenting the biggest population (/43, 54, 41, 33/) among the prototones
 - ...which can be considered as Mo Piu tonal candidates
- But a problem to solve
 - Extraction of the right pattern: for example /433 = 43-33/
 - ★ is it a speaker modulation of /43/ ???
 - * or a tonologic twofold tone 43-33 ???
- 2 efficient embedded cues to answer this question:
 - the difference of population between tones occurences
 - ★ with 1, 2 or more than 2 slope orientations
 - ★ either falling slopes or plateaux
 - the most frequently observed pattern

Discussion 3: extraction of the right tonal pattern

Tones	1 direction	2 directions	> 2 directions	Ranked 1st
/54/	4%	75 %	21%	54-44
/43/	15%	53%	32%	43-33
/41/	50%	28%	22%	41
/33/	100%	0%	0%	33

- /54/ and /43/: biggest population for 2 slope directions (respectively 75%, 53%)
 - /544/ (/54-44/), and /433/ (/43-33/): ranked 1st for 2 directions
- /41/, /33/: biggest population for 1 slope direction (respectively 50%, 100%)
 - /41/ and /33/ ranked 1st for 1 direction
- One hypothesis about the remaining %
 - simple variants of these 2 main patterns

Conclusion 1: Tonal patterns in Mo Piu langage

- The goals of our study
 - to give a description of Mo Piu tone patterns
 - to evaluate the detection and the annotation of the tone patterns via 2 tools
 - * an automatic one: PROSOTRAN
 - ⋆ a semi-automatic one, allowing manual adjustments: MISTRAL+
 - in the same conditions
 - ★ manual segmentation of the speech signal made by the same expert phonetician
 - ⋆ data calculated in semi-tones accross 5 levels
 - the results issued from the 2 tools are converging
 - overall agreement between the 2 tools concerning the slope direction:
 70%
 - ★ the pattern /43/ is the most frequent for both of them

Conclusion 2: comparing the present findings to the previous ones

- the main findings concerning tone levels confirm these ones of the previous studies [Caelen-Haumont and al., 2010, Caelen-Haumont, 2012]: same tonal patterns
- This present study allows
 - to reduce the number of different tone patterns previously found
 - to give more precision about them
 - ★ bidirectional pattern for falling tones /54/ (/54-44/) and /43/ (/43-33/),
 - ⋆ one direction pattern for /41/ and for the plateau /33/
- On the concordance of these findings, our results can be considered as:
 - a step towards tone phonology
 - supplying a pre-phonological scope about the Mo Piu tonal system

Conclusion 3: about the 8 prototones lists

- In the restricted number of the 175 words of the Prototones list, ...
- ...the main issue is that the 8 prototones do not lead to 4
 Mo Piu tones
- Under the pressure of history, contact with other languages, loan words, and internal organization, a tone restructuration is made in Mo Piu language
- Nowadays in Mo Piu, the main tone patterns are falling slopes and plateaux
- Some prototones (2, 3, 5, 8) seem to have merged into the same tone /43/...
- ...while the prototone 1 seems to mostly correspond to the tone /54/
- other data are needed to confirm
 - whether 6 is split up in the two tones /43, 41/
 - and whether the prototone 4 leads to the plateau /33/

Conclusion of all the conclusions

- I had the pleasure to reach Bangkok in order to join my last international meeting point
- I have attended a lot of international congress places since 1976...
- Bangkok is thus the last one and it will stay unforgotten in my heart and memory,
- SEALS 23 is the last conference of my CNRS researcher career
- ... and this presentation is probably the last one...
- So very warm thanks to all my research friends all over the world, my colleagues, my students, Mo Piu people and administrative staff, and all of you, for having given me a nice collaboration, help and fascinating intellectual discussions
 - The *team* I built on Mo Piu minority language in Hanoi (MICA) and France is now strong enough to carry on alone the work. Warm thanks particularly to Alice Vittrant, Do-Dat Tran, Brigitte Cortial, Jean-Cyrille Ly Van Tu, Katarina Bartkova, Alexis Michaud, Jean-Pierre Salmon, Benoît Weber, Dang Khoa Mac, without forgotting the other contributors,
 - My research work was a very great happiness and so will be the future of my life... keeping an eye on Mo Piu language research!

